Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.

Identifieur interne : 001582 ( Main/Exploration ); précédent : 001581; suivant : 001583

Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.

Auteurs : Rishi Sumit [États-Unis] ; Binod B. Sahu ; Min Xu ; Devinder Sandhu ; Madan K. Bhattacharyya

Source :

RBID : pubmed:22694952

Descripteurs français

English descriptors

Abstract

BACKGROUND

Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae.

RESULTS

The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes.

CONCLUSIONS

The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens.


DOI: 10.1186/1471-2229-12-87
PubMed: 22694952
PubMed Central: PMC3507847


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.</title>
<author>
<name sortKey="Sumit, Rishi" sort="Sumit, Rishi" uniqKey="Sumit R" first="Rishi" last="Sumit">Rishi Sumit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Binod B" sort="Sahu, Binod B" uniqKey="Sahu B" first="Binod B" last="Sahu">Binod B. Sahu</name>
</author>
<author>
<name sortKey="Xu, Min" sort="Xu, Min" uniqKey="Xu M" first="Min" last="Xu">Min Xu</name>
</author>
<author>
<name sortKey="Sandhu, Devinder" sort="Sandhu, Devinder" uniqKey="Sandhu D" first="Devinder" last="Sandhu">Devinder Sandhu</name>
</author>
<author>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22694952</idno>
<idno type="pmid">22694952</idno>
<idno type="doi">10.1186/1471-2229-12-87</idno>
<idno type="pmc">PMC3507847</idno>
<idno type="wicri:Area/Main/Corpus">001494</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001494</idno>
<idno type="wicri:Area/Main/Curation">001494</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001494</idno>
<idno type="wicri:Area/Main/Exploration">001494</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.</title>
<author>
<name sortKey="Sumit, Rishi" sort="Sumit, Rishi" uniqKey="Sumit R" first="Rishi" last="Sumit">Rishi Sumit</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Binod B" sort="Sahu, Binod B" uniqKey="Sahu B" first="Binod B" last="Sahu">Binod B. Sahu</name>
</author>
<author>
<name sortKey="Xu, Min" sort="Xu, Min" uniqKey="Xu M" first="Min" last="Xu">Min Xu</name>
</author>
<author>
<name sortKey="Sandhu, Devinder" sort="Sandhu, Devinder" uniqKey="Sandhu D" first="Devinder" last="Sandhu">Devinder Sandhu</name>
</author>
<author>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (immunology)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosome Segregation (genetics)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Disease Resistance (genetics)</term>
<term>Disease Resistance (immunology)</term>
<term>Ecotype (MeSH)</term>
<term>Fusarium (physiology)</term>
<term>Genes, Plant (genetics)</term>
<term>Homozygote (MeSH)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>Mutagenesis (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Phytophthora (physiology)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Immunity (genetics)</term>
<term>Pseudomonas syringae (physiology)</term>
<term>Soybeans (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (immunologie)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Fusarium (physiologie)</term>
<term>Gènes de plante (génétique)</term>
<term>Homozygote (MeSH)</term>
<term>Immunité des plantes (génétique)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mutagenèse (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Phytophthora (physiologie)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Pseudomonas syringae (physiologie)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Résistance à la maladie (immunologie)</term>
<term>Soja (microbiologie)</term>
<term>Ségrégation des chromosomes (génétique)</term>
<term>Écotype (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chromosome Segregation</term>
<term>Disease Resistance</term>
<term>Genes, Plant</term>
<term>Host-Pathogen Interactions</term>
<term>Mutation</term>
<term>Plant Diseases</term>
<term>Plant Immunity</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Gènes de plante</term>
<term>Immunité des plantes</term>
<term>Interactions hôte-pathogène</term>
<term>Maladies des plantes</term>
<term>Mutation</term>
<term>Protéines d'Arabidopsis</term>
<term>Résistance à la maladie</term>
<term>Ségrégation des chromosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Interactions hôte-pathogène</term>
<term>Maladies des plantes</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Arabidopsis</term>
<term>Disease Resistance</term>
<term>Host-Pathogen Interactions</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Diseases</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fusarium</term>
<term>Phytophthora</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fusarium</term>
<term>Phytophthora</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Chromosome Mapping</term>
<term>Crosses, Genetic</term>
<term>Ecotype</term>
<term>Homozygote</term>
<term>Mutagenesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Cartographie chromosomique</term>
<term>Croisements génétiques</term>
<term>Homozygote</term>
<term>Mutagenèse</term>
<term>Écotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22694952</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.</ArticleTitle>
<Pagination>
<MedlinePgn>87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-12-87</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sumit</LastName>
<ForeName>Rishi</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahu</LastName>
<ForeName>Binod B</ForeName>
<Initials>BB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sandhu</LastName>
<ForeName>Devinder</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhattacharyya</LastName>
<ForeName>Madan K</ForeName>
<Initials>MK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020090" MajorTopicYN="N">Chromosome Segregation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060146" MajorTopicYN="N">Ecotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005670" MajorTopicYN="N">Fusarium</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006720" MajorTopicYN="N">Homozygote</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22694952</ArticleId>
<ArticleId IdType="pii">1471-2229-12-87</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-12-87</ArticleId>
<ArticleId IdType="pmc">PMC3507847</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2012;13:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18499508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Nov;21(11):1421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1682921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18602859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1665-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(2):184-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17156413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 May 20;77(4):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8187176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):796-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 May;110(8):1429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15815926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1994 Jan 1;19(1):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8188214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Mar;16(3):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotech Histochem. 2010 Apr;85(2):99-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19669979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nematol. 2006 Jun;38(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):2117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2007 Nov;131(3):448-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2010;8:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20356372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Feb;13(2):413-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):731-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2010 Feb-Mar;89(2-3):194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19963301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 Sep-Oct;96(5):536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):2157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 May;2(5):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Sep 22;245(4924):1374-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2781284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):523-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16513603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):973-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
<name sortKey="Sahu, Binod B" sort="Sahu, Binod B" uniqKey="Sahu B" first="Binod B" last="Sahu">Binod B. Sahu</name>
<name sortKey="Sandhu, Devinder" sort="Sandhu, Devinder" uniqKey="Sandhu D" first="Devinder" last="Sandhu">Devinder Sandhu</name>
<name sortKey="Xu, Min" sort="Xu, Min" uniqKey="Xu M" first="Min" last="Xu">Min Xu</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Sumit, Rishi" sort="Sumit, Rishi" uniqKey="Sumit R" first="Rishi" last="Sumit">Rishi Sumit</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001582 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001582 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22694952
   |texte=   Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22694952" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024